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Abstract The Valley-Ridge inflection (VRI) points are related to the branching of
a reaction valley or reaction channel. These points are a special class of points of the
potential energy surface (PES). They are also special points of the Valley-Ridge bor-
derline of the PES. The nature of the VRI points and their differences with respect to the
other points of the Valley-Ridge borderline is analyzed using the Löwdin’s partitioning
technique applied to the eigenvalue equation of the Hessian matrix. Eigenvalues and
eigenvectors of the Hessian are better imaginable than the former used adjoint matrix.

Keywords Valley-ridge inflection point · Bifurcation of reaction path ·
Löwdin partitioning technique · Potential energy surface

1 Introduction

The analysis of potential energy surfaces (PESs) remain an important basis for classi-
fying and understanding the grounds of the mechanisms of chemical reactions as well
as their dynamics. It is associated to the concept of the reaction path (RP) or to the
definition of the minimum energy path on a PES. This is an important theoretical tool
in the reaction theory with a high intuitive power for chemists [1]. The RP is roughly
defined [2] as the curve, which connects two minima by passing through a first order
saddle point (SP), or transition state (TS) between them. The chemical reaction may
be composed by a number of elementary processes characterizing the mechanism of
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the reaction. RP bifurcations are omnipresent on PESs; they happen at VRI points
already on the PES of very small molecules like H2O [3], H2S, H2Se, H2CO [4],
HCN [5,6], the ethyl cation [7], H3CO, C2H5F [8], and many others. The importance
of VRI points for the chemical reactivity is described in the reviews of Ess et al. [9],
Bakken et al. [10] and Refs. [11,12].

The type of an RP widely used is a mass-weighted steepest descent (SD) curve
from the SP, the intrinsic reaction coordinate (IRC) [13–17]. However, in “skew”,
non-symmetric cases the IRC usually does not meet a VRI point being nearby. There
is a variety of other types of curves that can be used as RP models, and which meet
VRIs. The curves following a constant gradient direction (Newton trajectories (NT),
a former ansatz was coordinate driving) can be used in many cases to characterize
the RP [18,19]. Sometimes the gradient extremals (GEs) curves [20–25] also appear
to form a suitable ansatz for such purposes. Certain Newton trajectories describe the
valley or cirque structures of a PES, as well as their complements of ridges or cliffs (for
the definition of such structures see Ref. [26]). The structures are related to important
chemical properties of the PES of the reaction under study [11,12]. The use of NTs
opens the possibility to find and to study VRI points and, in succession, bifurcation
or branching points of reaction channels, because the reaction channel-branching is
related to the existence of a special class of points of the PES, the VRI points [27,28]. A
VRI point is that point in the configuration space where, orthogonally to the gradient,
at least one main curvature of the PES becomes zero [29]. This definition implies
that the gradient vector is orthogonal to an eigenvector of the Hessian matrix where
its eigenvalue is zero. Usually, VRI points represent nonstationary points of the PES.
Note that the VRI points are independent of the RP curve model used. They are related
to the nature of the PES topography. Normally the VRI points are not related to the
branching point of the RP curve except for NT curves [19,28]. So to say, a geometrical
indicator of a VRI point is the bifurcation of a singular NT.

However, a more general concept emerges. For it we go back to the IRC curve as
an RP model. This curve is defined by an autonomous system of differential equations
for the tangent vector describing its evolution [30]. Its solution is unique; due to this
fact no bifurcations can occur before reaching the next stationary point after the SP.
No branching of PES valleys will be truly described or located by using the IRC
curve as an RP type model [29,31]. It orthogonally traverses the family of levels,
the equipotential energy surfaces [30]. Hirsch and Quapp [32] gave an example of
a two-dimensional PES where the IRC is going over a skew ridge, however, it does
not find the valley ground nearby, which is here characterized by a GE. The IRC or
any other SD curve do not take into account the curvature of the traversed contours
in their evolution, in other words it does not give information on the valley floor or
ridge character of its pathway. After a change of levels from convex to concave form
the IRC curve ceases to be a valley pathway and is actually a merely RP. An early
visualization of such an instable minimum energy path was given by Mezey in Ref.
[33, p. 112, Figure II.13], see also [34]. As explained, the IRC curve traverses in its
evolution a family of equipotential energy surfaces. At any point of a SD curve we can
define a tangential plane to the equipotential energy surface orthogonally traversed by
the SD curve at the point, and the normal of the tangential plane is the gradient vector
of the point. All direction vectors contained in the tangential plane are orthogonal
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to the gradient vector. If at least one of these direction vectors is connected with the
curvature zero then we say that the SD curve crosses a Valley-Ridge transition (VRT)
point. The curve leaves a valley and enters a ridge region of the PES or vice-versa.
The VRT points are the border between valley- and ridge-regions. The concept of a
VRT point is much more general than the VRI point concept. In fact a VRI point is a
special case of a VRT point. In the general VRT situation, the gradient vector is not
orthogonal to the set of eigenvectors of the Hessian matrix. This is the most general
behavior. The zero curvature of the PES along the level line or equipotential energy
surface at the VRT point comes from a suitable linear combination of the eigenvectors
with their eigenvalues of the Hessian matrix. In fact a manifold of points with these
features exist on a PES. They are border points between quasi-convex valley regions
and ridges. NTs there have a turning point. So to say, a turning point of an NT is the
geometrical indicator of a VRT point, see [35]. The VRI points are special VRT points.

In this article we analyze the relations between VRT and VRI points using the
Löwdin’s partitioning technique applied to the Hessian eigenvalue equation [36]. This
partitioning technique was used to analyze the behavior of the Newton-Raphson pro-
cedure during the optimization of the Multi-Configurational Wave Function [37] and
the location of minima and SPs on a PES [38–40]. The connection with previous for-
mulations based on the adjoint matrix is also reported. The use of the Hessian itself is
better imaginable, in contrast to the use of its adjoint matrix in former calculations.

2 The matrix partitioning theory applied to the Hessian at the VRI point

2.1 Previous remarks

In the treatment of the theory of the VRI and VRT points we use the gradient vector
of the PES, g, and a set of N − 1 linear independent direction vectors, {si }i=1, N−1,
orthogonal to the gradient vector. N is the dimension of the PES. Without loss of
generality we take the set of N − 1 linear independent direction vectors as a set
of orthonormalized vectors, and we collect them using the rectangular matrix S =
[s1| · · · |sN−1]. The S matrix has the property, ST S = IN−1, where IN−1 is the unit
matrix of dimension N − 1. The superscript T means transpose. Initially the Hessian
matrix at any point of the PES, H, is expressed in the set of coordinates where the PES
function is defined. Now we assume that g is not the zero vector. We transform the
Hessian matrix into the base formed by the normalized gradient vector and the subset
of N − 1 linear independent direction vectors, collected in the S matrix,

TT HT= [r|S]T H [r|S]=
[

Hrr Hr S

HSr HSS

]
=

⎡
⎢⎢⎢⎣

rT Hr rT Hs1 . . . rT HsN−1

sT
1 Hr sT

1 Hs1 . . . sT
1 HsN−1

...
...

. . .
...

sT
N−1Hr sT

N−1Hs1 . . . sT
N−1HsN−1

⎤
⎥⎥⎥⎦ (1)

where r is the normalized gradient vector, r = g/(gT g)1/2, and Hrr = rT Hr, HSr =
ST Hr, Hr S = rT HS, HSS = ST HS. The matrix transformation T has the property
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that TT T = I being I the unit matrix of dimension N . Note that Hrr is a matrix block
of dimension one while HSr and Hr S are two vectors of dimension N − 1. Finally,
HSS is a matrix block of dimension (N − 1) × (N − 1). The Hrr block matrix is in
fact an element of the full Hessian matrix TT HT, in other words, (TT HT)11 = Hrr .
A deeper inspection of the vector HSr = ST Hr reveals its entries. If r is an eigenvector
of H, then H r = hr r, hr being its eigenvalue, and we have ST Hr = hr ST r = 0N−1,
the zero vector of dimension N − 1, because the S matrix is formed by N − 1 vectors
orthogonal to r per construction. If r is not an eigenvector, only then the vector HSr

can have non-zero entries, at all. Of course, the same holds for HT
r S .

The eigenvalue equation of the Hessian matrix in the original coordinates, H aI =
hI aI , I = 1, N where the set, {hI , aI }I=1, N , are the corresponding eigenpairs, can
be transformed into the new base vectors, taking the form,

[
Hrr Hr S

HSr HSS

] (
cr

I
cS

I

)
= hI

(
cr

I
cS

I

)
I = 1, N (2)

where cI = TT aI , and its components are cr
I = rT cI and cS

I = ST cI . At a VRI
point the Hessian matrix has at least an eigenpair, say J , such that, h J = 0 and the
corresponding eigenvector has the structure (TT aJ )T = (cJ )T = (cr

J , (cS
J )T ) =

(0, (cS
J )T ). This condition of a VRI point implies that det (H) = det (TT HT) = 0

while in a VRT point det (HSS) = 0 is required only. In this case we will have that one
column (or one row) of the HSS matrix is linearly dependent from the others. There
is an sI and there are N − 2 sJ vectors with

ST HsI =
N−2∑
J �=I

λJ ST HsJ (3)

with any real numbers λJ . The λJ are not all equal zero because that would be the case
of a zero eigenvalue of H, thus it would correspond to a VRI point. Multiplication of
Eq. (3) from the left hand side with S gives,

HsI =
N−2∑
J �=I

λJ HsJ . (4)

Because the set {sK }K=1,N−1 is an orthonormal system of vectors, they cannot be
eigenvectors of H, if Eq. (4) is fullfiled. In the contrary case, it would be hI sI =
Σ N−2

J �=I λJ h J sJ , which is a contradiction, if hI and at least one h J are not zero. So,
Eq. (4) cannot be fulfilled for eigenvectors of H. Because H is a symmetric matrix, it
has N orthogonal eigenvectors. Since H has not zero eigenvalues, its determinant is
not zero.

From the algebraic point of view, we note that det (HSS) = 0 does also not imply
det (H) = 0. The proof is the following. We assume that we are in a point where
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Hrr �= 0. First we take the Schur factorization [41] on the TT HT matrix,

[
Hrr Hr S

HSr HSS

]
=

[
1 0T

N−1
HSr H−1

rr IN−1

] [
Hrr 0T

N−1
0N−1 HSS − HSr H−1

rr Hr S

] [
1 H−1

rr Hr S

0N−1 IN−1

]
(5)

where 0N−1 is the zero vector of dimension N−1, and H−1
rr = 1/Hrr . Second we apply

the determinant theory to the above equality (5), obtaining, det (H) = det (TT HT) =
Hrr det (HSS − HSr H−1

rr Hr S). Now we assume that we are in a VRT point, however,
not in a VRI point. The Hrr is a matrix element different from zero and det (HSS) = 0.
For a dyadic product of two vectors, p and f, we have the relation det (I − pfT ) =
1−fT p, and for a non-singular quadratic matrix B we can extend this to det (B−pfT ) =
det(B) (1 − fT B−1p) [42]. If we use for the inverse matrix the adjoint matrix, A,
divided through the determinant, B−1 = A/det(B), we can shorten the det-factor and
we get,

det
(

B − pfT
)

= det (B) − fT Ap. (6)

Now let be B = HSS and A = ASS its adjoint matrix. We treat the limes case that
det (B) → 0. Then also Eq. (6) holds. In Eq. (6) we have to test p = ST Hr and
f = pH−1

rr . Let {wi }i=1, N−1 the set of eigenvectors of HSS . Without lost of generality
let w1 the eigenvector with null eigenvalue. Notice that at least an eigenvalue should be
zero because det (HSS) = 0. The ASS has the same eigenvectors, but its eigenvalues
are ρ1 �= 0 and ρi = 0 for i = 2, N − 1. Now we put the vector p = ST Hr = HSr as
a function of the eigenvectors of HSS ,

p = IN−1p =
(

N−1∑
i=1

wi wT
i

)
p =

N−1∑
i=1

χi wi (7)

where χi = wT
i p. We multiply both sides of Eq. (7) from the left by ASS and we get,

ASSp =
N−1∑
i=1

χi ASSwi = χ1ρ1w1 (8)

because the eigenvalues ρi for i = 2, N−1 are zero. With the result we have fT ASSp =
pT ASSp H−1

rr = χ2
1 ρ1 H−1

rr , and the determinant expression (6) becomes, det (HSS −
HSr H−1

rr Hr S) = −χ2
1 ρ1 H−1

rr . If χ1 �= 0, the determinant of the matrix (HSS −
HSr H−1

rr Hr S) is also not zero, and det (H) = det (TT HT) �= 0. In summary in a VRT
point det (HSS) = 0 but det (H) = det (TT HT) = Hrr det (HSS − HSr H−1

rr Hr S) =
−χ2

1 ρ1 �= 0.
In contrast, at a VRI point in addition to det (HSS) = 0 at least an element of the HSr

vector and by symmetry the corresponding element of the Hr S vector should be zero
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obtaining the condition det(H) = det(TT HT) = Hrr det(HSS −HSr H−1
rr Hr S) = 0,

as required in this type of points. These are the reasons why the condition of a point of
the PES to be a VRI is much stronger than that to be a VRT point. Before entering into
a more detailed analysis we transform the above eigenvalue Eq. (2) using the unitary
transformation,

U =
[

1 0T
N−1

0N−1 WSS

]
(9)

where WSS = [w1| · · · |wN−1] is the matrix formed by the set of eigenvectors that
diagonalize the block matrix HSS . The product is UT U = I because WT

SSWSS = IN−1.
The set of eigenvectors, which we collected in the matrix WSS , is defined by the
base of the N − 1 linear independent directions S being orthogonal to the gradient
vector. Now we transform the eigenpair Eq. (2) using the unitary matrix U, that is
UT (TT HT)UUT cI = hI UT cI . The structure of the resulting eigenpair equation is

[
Hrr zT

r S
zSr ZSS

](
cr

I
dS

I

)
= hI

(
cr

I
dS

I

)
I = 1, N (10)

where zSr = WT
SSHSr , dS

I = WT
SS cS

I and ZSS = WT
SS HSS WSS = {zi δi j }i, j=1, N−1

being zi the eigenvalues of the HSS block matrix. At a VRT point det (HSS) =
det (ZSS) = 0 which means that at least one eigenvector exists there, say w j , whose
eigenvalue z j = 0. This eigenvector is orthogonal to the gradient vector but is not
an eigenvector of the full Hessian matrix H. As explained in the Introduction section,
the latter implies that the equipotential energy surface has a direction, w j , of zero
curvature, z j = 0, but this direction does not coincide with an eigenvector, cI , of the
full Hessian matrix [29,31].

2.2 The theory of the partition technique applied to the eigenpair equation (10) at the
VRI point

We consider the eigenpair Eq. (10), where the set of eigenvalues of the HSS block
matrix are in increasing order, z1 ≤ z2 ≤ · · · ≤ zN−1. This eigenpair equation can be
written as a system of two coupled equations,

Hrr cr
I + zT

r SdS
I = hI cr

I (11a)

zSr cr
I + ZSSdS

I = hI dS
I . (11b)

For any hI for which the dS
I components of the eigenvector I are nonvanishing, we

can write the component cr
I as a function of dS

I ,

cr
I = − (Hrr − hI )

−1 zT
r SdS

I for ∀I = 1, N such that dS
I �= 0N−1. (12)
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Substituting in Eq. (11b) we obtain the next expression

[
ZSS −zSr (Hrr −hI )

−1 zT
r S

]
dS

I =hI dS
I for ∀I = 1, N such that dS

I �= 0N−1. (13)

The eigenpair solutions of Eq. (10) or Eq. (2) are equivalent to the solutions
of the above partitioned Eq. (13). We define the vectorial function or multival-
ued function l(h) as the vector whose elements are the eigenvalues of the matrix
L(h) = [ZSS − zSr (Hrr − h)−1zT

r S], and the single valued function R(h) = h.
The set of eigenpairs of the L(h) matrix is {l(h)i , v(h)i }i=1, N−1, for simplic-
ity in the future we omit the h dependence of vi . At each h the eigenvalues
of L(h) matrix are in increasing order, l(h)1 ≤ l(h)2 ≤ · · · ≤ l(h)N−1.
The eigenvalues of the eigenpair Eq. (10) or Eq. (2) are given by the set of hI for
which exists a l(hI )i = R(hI ) = hI , i = 1, N − 1. The vi eigenvector associated
to this eigenvalue l(hI )i = hI is the normalized form of the dS

I vector. Substituting it
in Eq. (12) we get the whole un-normalized (UT TT aI )

T = (cr
I , (d

S
I )

T ) eigenvector.
The graph of each branch of l(h) as a function of h is given in Fig. 1 and explained in
the next subsection. The horizontal asymptotes of these branches are the eigenvalues
zi of the block diagonal matrix ZSS with,

lim
h→±∞ l(h) = lim

h→±∞

⎛
⎜⎝

l(h)1
...

l(h)N−1

⎞
⎟⎠ =

⎛
⎜⎝

z1
...

zN−1

⎞
⎟⎠ . (14)

In the same way the corresponding set of eigenvectors of L(h) tends to the set of
eigenvectors of the block matrix HSS ,

lim
h→±∞

[
v1| · · · |vN−1

] = [
w1| · · · |wN−1

]
. (15)

The vertical asymptote is located at the h value that corresponds to the value of Hrr .
Each branch of l(h) is a nonincreasing function of h and satisfies a noncrossing rule
with the other branches. The shape of each branch say, l(h)i , is governed by the block
coupling matrix, zSr , or the equivalent one, zT

r S , and the corresponding eigenvector,
vi . As h approaches to the vertical asymptote Hrr , due to the noncrossing rule, only
the lowest branch of l(h) namely, l(h)1, becomes singular and has the principal part

l (h)1 = vT
1 L (h) v1 ≈ − (Hrr − h)−1 vT

1 zSr zT
r Sv1 = − (Hrr − h)−1

(
vT

1 zSr

)2
(16)

where the last equality holds due to the fact that zT
r S = zSr . At these values of h the

eigenvector v1 becomes proportional to the vector zSr and because the eigenvectors
are orthonormalized, the remainder of the set of eigenvectors does not interact with
the principal part. Due to this fact, l(h)i = vT

i L(h)vi ≈ vT
i ZSSvi , for i = 2, N − 1.

At the VRI point at least one eigenvalue of the Hessian matrix is zero, there must
be at least a branch, say l(h)i , such that at h = 0, l(0)i = R(0) = 0 = vT

i ZSSvi −
H−1

rr (vT
i zSr )

2. At the VRI point as well at least a diagonal element, say j , has the
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value zero, (ZSS) j j = z j = 0, implying that the branch l(h) j tends to zero as h
tends to −∞ and l(h) j+1 tends to zero as h tends to +∞. This behavior is due to
both the nonincreasing rule of the branches and the existence of a vertical asymptote.
In addition the substitution of the corresponding vi eigenvector as a normalized dS

I
vector in Eq. (12) the resulting cr

I component should be equal zero, which is the
second condition at the VRI point as explained in the previous subsection. These
two conditions are satisfied by the vi eigenvector if it is, at h = 0, orthogonal to
zSr vector since vi �= 0N−1 and from its structure should be a vector such that the
j component is equal one, vT

i = (01, . . ., 1 j , . . ., 0N−1). The latest satisfies that
R(0) = l(0)i = vT

i ZD
SSvi = z j = 0, as required. Notice that the subscript i of l(0)i

can be j or j + 1 depending if Hrr is positive or negative, respectively. Finally, the
component j of the vectors zSr and zT

r S should be equal zero since in this manner
vT

i zSr = 0, as required too. This ends the general analysis of the Hessian matrix at
the VRI point using the theory of Löwdin’s Partitioning Technique [36].

Finally, from this analysis based on the structure of the Hessian matrix, we can
say that the sufficient condition that a point of the PES is a VRT point is that the
determinant of HSS is zero. The HSS comes from the Hessian matrix of this point
projected in the subspace spanned by the set of N − 1 linear independent directions
orthogonal to the gradient vector. On the other hand this condition is necessary but
it is not sufficient for a VRI point. The sufficient condition for a VRI point is that in
addition to the condition that the HSS matrix has at least a null eigenvalue, this null
eigenvalue which is an element of the ZSS matrix must be decoupled with respect to
the Hrr diagonal element.

2.3 The features of the plot of l(h) of a Hessian matrix at the VRI point

We assume a VRI point on a five-dimensional surface as a generic example. In Fig. 1
is shown the l(h) plot as a function of h of the Hessian matrix in this point. At the VRI
point holds that at least a horizontal asymptote of the graph coincides with the h axis.
This asymptote corresponds to the eigenvalue or eigenvalues of the block Hessian
matrix, HSS , with the value zero. A branch should cross the point, h = 0, l(h) = 0,
and because the straight line R(h) = h also crosses this point, then, according to
the explanation given in the previous subsection, this implies that the full matrix has
at least an eigenpair with null eigenvalue. The shape of each branch is a function of
the factor (vT

i zSr )
2 being vi the eigenvector associated to the considered branch. The

graph also has a unique vertical asymptote at h = Hrr , where Hrr is the element of the
one-dimensional block matrix Hrr . A general graph is pictured in Fig. 1 for the case
of a negative Hrr . The block Hessian matrix HSS has a negative eigenvalue, z1, the
eigenvalue zero, labeled as z2, and two positive eigenvalues, z3 and z4. The resulting
full Hessian has two negative eigenvalues, h1 and h2, two positive eigenvalues, h4 and
h5, and the null eigenvalue, h3. These values are located where the branches cut the
straight line R(h) = h. The branch l(h)2 as h tends to −∞ asymptotically approaches
to the level of the eigenvalue z2 = 0. However in its evolution as h tends to +∞
asymptotically approaches to the level of the eigenvalue z1. This decreasing effect
starts before the branch reaches the point h = 0, l(h) = 0. Paying attention to the
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l(h) R(h)=h

h

l(h)=0

h=Hrr h=0

z1
z1

z2=0

z3

z4

z3

z4

z2=0

h1

h2

h3=0

h4

h5

l(h)1

l(h)2

l(h)3

l(h)4

l(h)5

Fig. 1 Plot of the vectorial function or multivalued function l(h) as function of h. The elements of this
vectorial function represent the eigenvalues of the matrix L(h) = [ZSS − zSr (Hrr − h)−1zT

r S ], and the
eigenvalues of the Hessian matrix are represented by the intersections of these branches with the line
R(h) = h. The Hessian matrix corresponds to a VRI point of a generic five dimensional surface. The
Hrr element is taken negative. We show the case where the block Hessian matrix HSS has in addition to
the eigenvalue zero (z2) a negative eigenvalue, z1, and two positive eigenvalues, z3 and z4. The resulting
full Hessian has two negative eigenvalues, h1 and h2, two positive eigenvalues h4 and h5 and the null
eigenvalue, h3. These values are located where the branches cut the straight line R(h) = h. The asymptote
of the branch l(h)3 at negative values of h takes the value of z3 whereas at positive values takes the value of
z2 and across the point h = 0, l(h) = 0. This branch is responsible for the fact that the full Hessian matrix
has a null eigenvalue. At the value h = Hrr , the eigenvector of the branch l(h)1, v1, is parallel to the block
coupling matrix which is a vector, zSr . For the remainder of the branches their eigenvectors are orthogonal
to this coupling vector. The branch l(h)3 at the point h = 0, l(h) = 0 the associated eigenvector has the
structure, (v3)T = (0, 1, 0, 0), being orthogonal to the zSr vector. This is the reason way the eigenvector
of the null eigenvalue of the full Hessian is orthogonal to the gradient vector. For this reason this Hessian
belongs to a point of the PES that is a VRI point. See text for more details

branch l(h)3, as h tends to −∞ this branch asymptotically approaches to the level
of the eigenvalue z3 but it asymptotically approaches to the level of the eigenvalue
z2 when h tends to +∞. During this evolution the branch l(h)3 crosses the point,
h = 0, l(h) = 0, which is also a point of the straight line, R(h) = h. Due to this fact
this branch is responsible for the full Hessian matrix having a null eigenvalue, labeled
as h3. The associated eigenvector of the branch l(h)3 at the point, h = 0, l(h) = 0,
has the structure, (v3)

T = (0, 1, 0, 0), which is orthogonal at this point to the vector,
zSr , the block of matrix coupling elements. This orthogonality is the reason why the
eigenvector with null eigenvalue of the full Hessian matrix is orthogonal to the gradient
vector.

At the value h = Hrr , the eigenvector of the branch l(h)1, v1, is parallel to the
block coupling vector, zSr . The value of l(h)1 goes to −∞ as h approaches to Hrr
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from the left. In this interval the branch crosses the straight line R(h) = h at the value
h = h1. Note that h1 < Hrr . For the remainder of the branches at h ≈ Hrr holds, their
eigenvectors are orthogonal to the zSr coupling vector, that their values are given by
vT

i ZSSvi for i = 2, 3, 4. The values of vT
i ZSSvi for i = 2, 3, 4 are between z1 and

z4, in other words, z1 ≤ vT
i ZSSvi ≤ z4 thanks to the MiniMax Eigenvalue theorem

[43].
In the h interval that goes from Hrr to +∞ a new branch appears just at h ≈ Hrr

on the right hand side part. This new branch is labeled as l(h)5 and its values decrease
asymptotically from +∞ to the value of the eigenvalue z4 as h tends to +∞. In this
interval this branch crosses the straight line R(h) = h at the value of h = h5 which is
the highest eigenvalue of the full Hessian matrix.

2.4 Connection with previous expressions used to characterize the VRT and VRI
points

So far the basic element used in the present analysis is the Hessian matrix. We derive
its structure at the VRT and VRI points. From these results the necessary and sufficient
conditions for a point to be VRT or VRI point have been discussed. However, these
conditions were derived and analyzed some time ago using the adjoint matrix of the
Hessian matrix rather than the Hessian itself. Now we expose the equivalence between
both views in this subsection. From the matrix theory and the determinant theory it is
known that a matrix multiplied by its adjoint matrix is equal to the unit matrix times
the determinant value of the matrix. We apply this formula to the TT HT matrix,

TT ATTT HT=TT Tdet (H)=
[

Arr Ar S

ASr ASS

] [
Hrr Hr S

HSr HSS

]
=

[
1 0T

N−1
0N−1 IN−1

]
det (H)

(17)

where we applied that TT T = I, the unit matrix of dimension N . The adjoint matrix
A is defined as A j i = [(−1)i+ j mi j ]T , where mi j is the minor of H obtained by
the deletion of the i th row and the j th column from H, and taking the determinant.
Note that j and i are interchanged in A j i . In the TT AT matrix we have the element
Arr = rT Ar. Ar S = rT AS and ASr = ST Ar are vectors of dimension N − 1,
where due to the symmetry (ASr )

T = Ar S and ASS = ST AS is a block matrix of
dimension (N − 1) × (N − 1). As noted above, if a point is a VRT point then the
sufficient condition is det (HSS) = 0. Using the definition of the adjoint matrix we
have, Arr = rT Ar = det(HSS) = 0, now since r = g/(gT g)1/2 we finally obtain

rT Ar = gT Ag
gT g

= 0. (18)

Equation (18) was found by Hirsch [31], so it will be labeled as the Hirsch equation. It
gives the sufficient condition of a VRT point. The connection to the previous analysis
based on the Hessian matrix is now well established. However, this is a necessary
condition but not a sufficient one for a point to be a VRI point given in terms of the
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A matrix. In terms of the adjoint matrix A the sufficient condition of a VRI point can
be derived as follows. Using the structure of the Hessian matrix, TT HT at the VRI
point and the definition of the adjoint matrix, at the VRI point the TT AT matrix has
the form

[
Arr Ar S

ASr ASS

]
=

[
0 0T

N−1
0N−1 ASS

]
. (19)

The reason of this result is due to the decoupling between the diagonal element Hrr and
the null element of the diagonal ZSS matrix. According to these results all elements
of the first column and the first row of the TT AT matrix are zero. Due to this fact we
can write the first column or due to the symmetry the first row of this adjoint matrix as
(Arr Ar S) = (rT Ar rT AS) = rT A[r| S] = rT AT = 0T . Since the T matrix is built
by a set of N linear independent vectors and using the definition of the r vector we
obtain,

Ar = Ag
(

gT g
)−1/2 = 0. (20)

Equation (20) gives the necessary and sufficient condition for a point of the PES to be a
VRI point using the adjoint matrix of the Hessian as a basic element [5]. We conclude
that it is equivalent for a VRT point to say det (HSS) = 0 means that rT Ar = 0, and
for a VRI point it is equivalent to say that the null or null elements of ZSS matrix are
decoupled with respect to the diagonal element of Hrr which means that Ar = 0.

3 Some numerical examples

3.1 A two-dimensional case

This is the trivial case but it helps to clarify the above conclusions. The PES is given
in Cartesian coordinates, V (x), where xT = (x1, x2). The normalized gradient vector
is rT = (r1, r2) and its orthogonal normalized direction vector, sT = (s1, s2). These
two vectors define the T matrix transformation T = [r| s]. Let us assume that the
current point is a VRT point, then the transformed Hessian matrix to the r and s base
vectors is

TT HT = [
r| s

]T
[

H11 H12
H21 H22

] [
r| s

] =
[

rT Hr rT Hs
sT Hr sT Hs

]
=

[
Hrr Hrs

Hsr 0

]
. (21)

Due to the symmetry of the Hessian matrix Hrs = Hsr and from this det(H) = −H2
rs .

If the point is a VRI then Hrs = Hsr = 0 and det(H) = 0. In these conditions the
eigenpair with the eigenvalue, h = 0, of the Hessian matrix given in Eq. (21) is
cT = (0, 1). Transforming the eigenvector back to Cartesian coordinates we obtain
aT = cT TT = sT . This eigenvector coincides with the normalized direction vector
orthogonal to the gradient vector. In this way the eigenvector with null eigenvalue is
tangent to the equipotential energy curve at the VRI point.
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Fig. 2 Equipotential curves of the two-dimensional PES model given in Eq. (22). The IRC curve from the
SP1 to the minimum is the dotted line. GEs are the thick dotted curves, branches of a singular NT are the
bold dashes. Pairs of eigenvectors of the Hessian are shown at a grid of points. The thin dashed lines are the
border between the valley and the ridge of the PES. Each point of this border is a VRT point and satisfies
the Hirsch Eq. (18)

A numerical example of a two-dimensional PES is that proposed by Quapp and
coworkers [31]. The PES is characterized by the following expression

V (x) = 1/2
(

x1x2
2 − x2x2

1 − 7/4x1 + 2x2

)
+ 1/30

(
x4

1 + x4
2

)
. (22)

This PES is pictured in Fig. 2. The values are given in arbitrary units. At the point xT =
(0, 0) the normalized gradient vector is rT = (−7, 8)(113)−1/2 and the orthogonal
direction vector is sT = (8, 7)(113)−1/2. All the elements of the Hessian matrix take
the value zero, H11 = H22 = H21 = H12 = 0. Clearly the det(H) = 0 implying
that the point (0, 0) is a VRI point of this PES. Taking into account the previous
discussion means that the s vector is just the eigenvector of null eigenvalue orthogonal
to the gradient vector. Furthermore, in this case the normalized gradient vector r is
also an eigenvector of null eigenvalue. For the reason this point is a point belonging
to a GE curve [20–25] of this PES.

Now we take the point xT = (0.44, −0.80) located on the valley ridge border-
line indicated as a thin dashed line in Fig. 2. The normalized gradient vector is
rT = (−0.37, 0.93) and the orthogonal direction vector is sT = (0.93, 0.37). In
the [r| s] base representation the elements of the Hessian matrix take the values,
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Hrr = 1.57, Hrs = Hsr = −0.96 and Hss = 0.0. Due to this Hessian structure
this point is a VRT point and the s direction vector has null curvature. The s direc-
tion is tangent to the equipotential curve at this point. The equipotential curve has
null curvature at this point. The eigenvectors of the Hessian matrix in the Cartesian
coordinates are aT

1 = (0.68, 0.73) and aT
2 = (−0.73, 0.68) and their eigenvalues are

h1 = −0.46 and h2 = 2.03 respectively. Note that det (H) �= 0 and no eigenvector
coincides with the s vector, the direction vector of null curvature. Clearly the point
xT = (0.44, −0.80) is a VRT point of the PES given in Eq. (22). This point is also a
point that belongs to the IRC curve joining the SP with the minimum. For the reason
this IRC is an RP but achieves the category of minimum energy path. In its evolution
from the first order saddle point it leaves a valley and enters a ridge and finally again
enters the valley of the minimum. In Fig. 2 this IRC curve is the dotted line. Note, the
crossing of the IRC with the border line between valley and ridge, the dashed curve of
VRT points, does not indicate where a possible RP bifurcation can take place on the
PES. Additionally, there is such a border line through every SP where no bifurcation
takes place.

3.2 A three-dimensional chemical example

As a chemical example we report the three dimensional system HCN. For simplicity
only, we approximate the coordinates as Cartesians: uncoupled, orthogonal coordi-
nates. The PES function is given in internal coordinates defined by the two bond
distances, namely, CH and CN, and the bond angle, HCN, labeled by α. In this case
Eq. (1) takes the form,

TT HT = [
r s1 s2

]T

⎡
⎣ HC H,C H HC H,C N HC H,α

HC N ,C H HC N ,C N HC N ,α

Hα,C H Hα,C N Hα,α

⎤
⎦ [

r s1 s2
] =

⎡
⎣ rT Hr rT Hs1 rT Hs2

sT
1 Hr sT

1 Hs1 sT
1 Hs2

sT
2 Hr sT

2 Hs1 sT
2 Hs2

⎤
⎦ .

(23)

Both matrices are symmetric. Figure 3 shows a schematic section of some VRT points
on the PES of HCN obtained at the level RHF/6-31G* using the GAMESS code [44].
They are approximated by the dashed line. The picture is a projection into the plane
CH = 1.125 Å, and for the level lines, all energies are optimized to the corresponding
raster of the two coordinates CN, and angle α. There is a VRI point of the dissociation
of the N-atom from the SP of the isomerization. The VRI is at the cross of the four
branches a, b, c, and d of the singular NT through the point. Further dotted curves
are regular NTs, like the curve e. At their turning points are cross-symbols: these
are the VRT points. There is the border between the branches a, and b, however,
not between a, and d, because the VRI point is of a mixed character. It is not a
usual ”pitchfork” bifurcation. The branches b and c are valley pathways, however,
a, and d are on the ridge. The ”southern” NTs increase in energy from the SP and
lead anywhere into the PES mountains to an SP of index two. They do not have a
turning point. Branches b and c, (or, not shown, NTs on the right hand side, and over
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Fig. 3 Two-dimensional contour diagram of the HCN PES section for CH = 1.125 Å fixed [31]. The fixed
value is the CH distance of the VRI point. The NTs are projected from their three-dimensional space into
this plane. The dotted branches a, b, c, d are the singular NT through the VRI point, where other dotted
curves are regular NTs. The NTs between branches a, and b have TPs depicted by crosses. They are VRT
points. There is the border between the bowl of the HCN minimum, and the ridge through the SP. Further
properties of the VRT point of curve e are given in the text. There is also a GE (thin line) which connects
the SP and the VRI point. It does not bifurcate at the VRI point

them) may serve as an RP model of the dissociation of the N-atom from the HCN
minimum.

At each point of the NT depicted by e we compute the eigenvalues and the
eigenvectors of the corresponding Hessian matrix to find a VRT point. The VRT
is at the point qT = (qC H , qC N , qα) = (1.297, 1.090, 94.7). The bond distances
are given in Å and the bond angle in degrees. At this point the Hessian matrix in
internal coordinates is HC H,C H = 0.11193, HC H,C N = −0.01487, HC N ,C N =
2.04173, HC H,α = 0.07521, HC N ,α = 0.07936, Hα,α = −0.03748. The units are
given in Hartree/bohr2, Hartree/(bohr radian) and Hartree/radian2. The eigenpairs
of this Hessian matrix are h1 = −0.07, aT

1 = (−0.037, −0.381, 0.924); h2 =
0.14, aT

2 = (−0.009, 0.924, 0.381); h3 = 2.04, aT
3 = (−0.999, 0.006, −0.038).

The main component of the first eigenvector is the bond angle α, while for the
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Fig. 4 Singular NT (dots) which meets the VRI point of an N-dissociation from HCN saddle in the full
three-dimensional configuration space of internal coordinates. The singular NT connects SP and VRI point,
as well as the HCN minimum and the VRI point. There are regular NTs (dots also) turning off the VRI
region. The full and dashed line (left and below) is the valley line of the isomerization [5]

second and the third eigenvectors the main components are the bond distances CN
and CH, respectively. Note that det (H) �= 0 indicating that this point is not a
VRI point. The gradient vector at this point in Hartree/bohr and Hartree/radian
is, gT = (−0.230, 0.078, −0.044). Using this gradient vector a T matrix trans-
formation is computed by a Gram-Schmidt orthogonalization using the gradient
for the first vector. Their components are, rT = (−0.933, 0.315, −0.176), sT

1 =
(0.213, 0.875, 0.434), sT

2 = (−0.291, −0.367, 0.884). The components of the
resulting TT HT symmetric matrix are, rT Hr = 1.812, sT

1 Hr = −0.398, sT
1 Hs1 =

0.238, sT
2 Hr = 0.508, sT

2 Hs1 = −0.121, sT
2 Hs2 = 0.066. The block matrix HSS

is characterized by the elements of the TT HT matrix, sT
1 Hs1, sT

2 Hs1, sT
2 Hs2 and

due to the symmetry sT
2 Hs1 = sT

1 Hs2. The eigenpairs of this HSS matrix are, z1 =
0.00, wT

1 = (0.458, 0.889); z2 = 0.30, wT
2 = (0.889, −0.458). From these results

we see that det(HSS) = 0. The coupling vector between rT Hr and ZSS = WT HSSW,
namely, zT

r S = (sT
1 Hr sT

2 Hr)W = (sT
1 Hr sT

2 Hr) [w1|w2] = (0.269, −0.586) �= 0T
2 .

Because det (HSS) = 0 and zr S �= 02 or that it is equal det (H) �= 0 and det (HSS) = 0
we conclude that this point is a VRT point.

Figure 4 shows the same VRI region like Fig. 3 in the full three-dimensional
configuration space of all internal coordinates. Note that this VRI point is part of
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a one-dimensional VRI manifold on the two-dimensional ridge of the PES, a curve,
thus a manifold of dimension N −2, see [6]. The VRT points form a two-dimensional
surface in the full space.

4 Conclusions and final remarks

The purpose of this paper is to show the mathematical features of VRI- and VRT
points and their subtle differences. Based on the application of Löwdin’s Partitioning
Technique [36] on the Hessian eigenpair equation at the VRT and VRI points we
derive the structure of this matrix at these special points of the PES. This analysis
was carried out in the space spanned by the gradient and the complete subset of linear
independent directions orthogonal to the gradient vector. The change of coordinates
permits to study the curvature of the proper directions contained in the equipotential
energy surface in a better way. The nature of this curvature is related to the existence
of VRT and VRI points. The Hessian matrix in this new set of coordinates can be
divided into two diagonal blocks. A block corresponds to the Hessian projection into
the gradient subspace and the other one of the resulting projection of this Hessian into
the subset of directions tangent to the equipotential energy surface. The coupling block
of these two diagonal block matrices should also be taken into account. The Löwdin’s
Partitioning Technique enables us to use the structure of these blocks to conclude if
the point is a VRT or a VRI point. If the diagonal form of the block Hessian matrix
has at least a null eigenvalue and this element is decoupled with respect to the block
of Hessian projected into the gradient subspace then we are in a VRI point. If the
blocks are coupled then we are in a VRT point. In the latter case the eigenvector of
null eigenvalue of this block matrix is not an eigenvector of the full Hessian matrix,
since this eigenvector is defined in the subspace of directions tangent to the equipo-
tential energy surface. It does not make the decoupling between the null eigenvalue
and the block Hessian projected into the gradient subspace. In the former case the
eigenvector of null eigenvalue due to the decoupling with the block Hessian projected
into the gradient subspace is an actual eigenvector of the full Hessian matrix of this
point.

Note that the eigenvalues of the Hessian may depend from the used coordinate
system. Fortunately, the sign or the zero value are independent. Thus, the location of
the VRI points does not depend from the coordinate system [2,45,46]. We can use any
convenient linear transformation to highlight VRI points.

Finally we report the connection with a former alternative way to characterize these
points by the adjoint Hessian matrix. However, the adjoint matrix is more abstract
and not well imaginable. The Hirsch equation for a VRT point, Eq. (18), and their
counterpart for the VRI points, Eq. (20), are the equivalent form using the adjoint
matrix to that just explained using the Hessian as a basic element.
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